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Abstract
Introduction  Proteomic profiling of end-stage renal disease (ESRD) patients could lead to improved risk prediction and 
novel insights into cardiovascular disease mechanisms. Plasma levels of 92 cardiovascular disease-associated proteins were 
assessed by proximity extension assay (Proseek Multiplex CVD-1, Olink Bioscience, Uppsala, Sweden) in a discovery cohort 
of dialysis patients, the Mapping of Inflammatory Markers in Chronic Kidney disease cohort [MIMICK; n = 183, 55% women, 
mean age 63 years, 46 cardiovascular deaths during follow-up (mean 43 months)]. Significant results were replicated in the 
incident and prevalent hemodialysis arm of the Salford Kidney Study [SKS dialysis study, n = 186, 73% women, mean age 
62 years, 45 cardiovascular deaths during follow-up (mean 12 months)], and in the CKD5-LD-RTxcohort with assessments 
of coronary artery calcium (CAC)-score by cardiac computed tomography (n = 89, 37% women, mean age 46 years).
Results  In age and sex-adjusted Cox regression in MIMICK, 11 plasma proteins were nominally associated with cardiovas-
cular mortality (in order of significance: Kidney injury molecule-1 (KIM-1), Matrix metalloproteinase-7, Tumour necrosis 
factor receptor 2, Interleukin-6, Matrix metalloproteinase-1, Brain-natriuretic peptide, ST2 protein, Hepatocyte growth 
factor, TNF-related apoptosis inducing ligand receptor-2, Spondin-1, and Fibroblast growth factor 25). Only plasma KIM-1 
was associated with cardiovascular mortality after correction for multiple testing, but also after adjustment for dialysis 
vintage, cardiovascular risk factors and inflammation (hazard ratio) per standard deviation (SD) increase 1.84, 95% CI 
1.26–2.69, p = 0.002. Addition of KIM-1, or nine of the most informative proteins to an established risk-score (modified 
AROii CVM-score) improved discrimination of cardiovascular mortality risk from C = 0.777 to C = 0.799 and C = 0.823, 
respectively. In the SKS dialysis study, KIM-1 predicted cardiovascular mortality in age and sex adjusted models (hazard 
ratio per SD increase 1.45, 95% CI 1.03–2.05, p = 0.034) and higher KIM-1 was associated with higher CACscores in the 
CKD5-LD-RTx-cohort.
Conclusions  Our proteomics approach identified plasma KIM-1 as a risk marker for cardiovascular mortality and coronary 
artery calcification in three independent ESRD-cohorts. The improved risk prediction for cardiovascular mortality by plasma 
proteomics merit further studies.
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Introduction

Chronic kidney disease (CKD) is a major public health 
problem worldwide [1] determining a significant burden of 
mortality, cardiovascular disease (CVD) being the leading 
cause of death [2–4]. Irrespective of therapeutic advances 
and improved care, end-stage renal disease (ESRD) patients 
have an up to 20-fold increased cardiovascular mortal-
ity risk compared to the general population [5]. Many of 
the traditional cardiovascular risk factors such as age, sex, 

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4062​0-018-0556-5) contains 
supplementary material, which is available to authorized users.

 *	 Johan Ärnlöv 
	 johan.arnlov@ki.se

Extended author information available on the last page of the article

http://orcid.org/0000-0002-6933-4637
http://crossmark.crossref.org/dialog/?doi=10.1007/s40620-018-0556-5&domain=pdf
https://doi.org/10.1007/s40620-018-0556-5


112	 Journal of Nephrology (2019) 32:111–119

1 3

dyslipidemia, diabetes mellitus and smoking do not appear 
to adequately explain the high cardiovascular risk in ESRD 
patients. As a consequence, managing ESRD-related CVD 
with standard clinical interventions is deemed suboptimal 
[6, 7]. Instead, non-traditional risk factors (such as mineral 
metabolism abnormalities, uremic toxins, and inflammation) 
contribute to cardiovascular pathology in ESRD [7–10], but 
little is known about which factors in the vascular milieu of 
hemodialysis patients are most important.

Recent years have witnessed unprecedented developments 
in the field of proteomics and process-specific biomarker 
panels for renal diseases [11–16]—techniques that could 
offer vital diagnostic and prognostic information as well as 
novel insights into mechanisms leading to CVD.

Our objective was to investigate the association between 
92 cardiovascular proteins measured in plasma by a novel 
proteomics assay and the risk of cardiovascular mortality in 
prevalent hemodialysis patients, and to replicate the find-
ings in an independent hemodialysis cohort. Furthermore 
we also wanted to assess whether plasma proteomics could 
improve the prediction of cardiovascular mortality beyond 
established risk factors. In order to provide additional mech-
anistic insights, a secondary aim was to use an independent 
cohort of CKD-stage 5 patients undergoing living donor 
renal transplantation (LD-RTx) with detailed data on car-
diovascular phenotypes.

Methods

Discovery cohort, MIMICK

For the primary discovery analysis, we used the Mapping 
of Inflammatory Markers in Chronic Kidney disease study 
(MIMICK), a longitudinal study cohort consisting of 228 
hemodialysis patients from six dialysis units in the Stock-
holm/Uppsala (Sweden) region. All subjects included had 
received dialysis treatment for ≥ 3 months, with a median 
follow-up period of 31 months (interquartile range, IQR 
21–38). Survival, censored at transplantation, was deter-
mined from the day of examination. The patients were 
recruited from October 2003 through March 2004 and 
data on demographics, comorbidities and antihypertensive 
treatment were obtained by questionnaire or from hospi-
tal records. Venous blood samples were collected before 
the dialysis period, spun down immediately, and stored as 
EDTA plasma at -70 °C. High-sensitivity C-reactive protein 
(hsCRP) was measured by nephelometry. An immunometric 
assay on an Immulite Analyzer (Siemens Medical Solutions 
Diagnostics, Los Angeles, CA, USA) was used to quantify 
interleukin (IL)-6 in serum. Pentraxin 3 (PTX3) was deter-
mined by an ELISA kit (Perseus Proteomics, Tokyo, Japan). 
Routine biochemistry was performed in all of the six dialysis 

laboratory departments in the Stockholm/Uppsala region. 
In the current analysis, sufficient plasma samples for pro-
teomics analysis were available for 183 of the patients. A 
detailed description of the study cohort has been previously 
reported [17, 18].

Replication cohort, SKS dialysis study

As replication, we used the incident and prevalent hemodi-
alysis arm of the Salford Kidney Study (SKS dialysis study), 
consisting of hemodialysis patients under the care of Salford 
Royal Hospital NHS Foundation Trust, United Kingdom. All 
patients received standard-hours, thrice weekly maintenance 
hemodialysis at Salford Royal Hospital or one of its satellite 
centers. The patients were enrolled between March 2012 and 
March 2014 with their written informed consent. Local ethi-
cal approval was granted (UK REC 05/Q1404/187), and the 
study complied with the Declaration of Helsinki.

The baseline clinical phenotype including demographic 
data, comorbidities, medications, and dialysis records was 
obtained from electronic patient medical records and patient 
self-reported questionnaires.

Blood samples were drawn from the dialysis circuit 
immediately before commencement of a dialysis session. 
Standard clinical tests were performed immediately and 
additional samples centrifuged and plasma and serum 
stored at − 80 °C. Such latter samples were used for KIM-1 
analyses which were measured on citrated plasma by elec-
trochemiluminescence, using the MESO QuickPlex SQ 120 
automate from Mesoscale Discovery Systems (Rockville, 
MD, USA). A more detailed description of the cohort has 
been reported elsewhere [19].

Secondary analyses, CKD5 patients undergoing 
living donor renal transplantation (LD‑RTx)

For further pathophysiologic insight, we used a cross-
sectional study consisting of 89 adult CKD5-LD-RTx at 
the Department of Transplantation Surgery at Karolinska 
University Hospital, Huddinge, Sweden. A comprehen-
sive description of the study is available elsewhere [20]. 
Briefly, the median age was 46 years (range 24–62) and 
37% were women. Pharmacological treatment, and previ-
ously diagnosed CVD was recorded. Out of the 89 partici-
pants, 39% were in pre-dialysis phase and 61% underwent 
either hemo- or peritoneal dialysis before RTx. Cardiac 
computed tomography (CT) scans were performed using 
a 64-channel detector scanner (LightSpeed VCT; Gen-
eral Electric Healthcare, Milwaukee, WI, USA) in cine 
mode. Calcium deposits in the coronary arteries (portray-
ing both intima and media) were identified by an expe-
rienced radiologist [20]. An Advantage Workstation 4.4 
(GE Healthcare) was used to process and analyze data, 
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and Smartscore 4.0 (GE Healthcare) software was used 
to assess coronary artery calcium (CAC) scores. Values 
crossing the standard threshold of 130 Hounsfield units 
were considered indicative of calcified plaques. CAC 
scores were expressed in Agatston units (AU), and total 
CAC score was calculated as the sum of the CAC scores in 
the left main artery, left circumflex artery, right coronary 
artery, and the left anterior descending artery.

Informed consent was obtained from all patients involved, 
and the Regional Ethics Committee of the Karolinska Insti-
tute at the Karolinska University Hospital approved both 
study protocols.

Proteomics

The Olink Proseek® Multiplex Cardiovascular I96X96 kit 
(http://www.olink​.com/) is a proximity extension assay 
(PEA) that measures the relative abundance of 92 cardio-
vascular proteins. For each protein, oligonucleotide-labeled 
antibody pairs bind to their specific epitopes on the pro-
tein surface [21, 22]. The complementary oligonucleotide 
sequences then give rise to DNA reporter sequences each 
barcoding their respective antigens. Using a Fluidigm Bio-
mark™ HD real-time polymerase chain reaction (PCR) plat-
form, we then quantified these amplicons. Mean intra- and 
inter-assay coefficients of variation are 8 and 12%, respec-
tively, with a reported inter-site variation of 15% [22]. 
Log2-scaled normalized protein expression values were 
adjusted by a negative control sample. Higher expression 
values correspond to higher protein levels, but are not an 
absolute quantification of protein concentrations.

Outcome definition

In the MIMICK cohort, the patients were followed from the 
inclusion date until renal transplantation or death or comple-
tion of 60 months of follow-up. Causes of death were estab-
lished by the death certificate issued by the attending phy-
sician. Cardiovascular mortality was defined according to 
International Classification of Diseases (10th revision) codes 
I00–I99. Follow-up in the SKS dialysis study was from the 
date of a study protocol echocardiogram (again between 
March 2012 and March 2014) until death, transplantation, 
re-location, or August 10th 2016. Causes of death and events 
were independently verified by two blinded assessors.

Statistical analysis

Analyses were carried out using STATA 12 (StataCorp, Col-
lege Station, TX, USA) and R v.3.3.2.

Primary analyses

We used MIMCK-1 to investigate associations between the 
92 proteins and cardiovascular mortality in an age and sex-
adjusted Cox proportional hazard regression (Model A). A 
p value < 0.00054 (Bonferroni correction 0.05/92 proteins) 
was considered statistically significant. Protein values were 
transformed to a mean of 0 and standard deviation of 1. We 
then replicated the significant associations in an independent 
cohort, SKS dialysis study, of hemodialysis patients using 
age and sex-adjusted Cox proportional hazard regression.

Secondary analyses

For proteins that were significantly associated with cardio-
vascular mortality in the primary analysis, we performed 
additional multivariable Cox regression analyses in MIM-
ICK adjusting for the following variables:

B.	 Age, sex, and dialysis vintage to determine if the asso-
ciations were independent of general characteristics and 
time on dialysis.

C.	 Age, sex, dialysis vintage, CVD, and N-terminal prohor-
mone of brain natriuretic peptide (NT-proBNP) to deter-
mine if the associations were independent of prevalent 
CVD and heart dysfunction.

D.	 Age, sex, dialysis vintage, CVD, NT-proBNP, and car-
diovascular risk factors—diabetes mellitus (DM), body 
mass index (BMI), high density lipoproteins (HDL), low 
density lipoproteins (LDL), and smoking—to determine 
if the associations were independent of established car-
diovascular risk factors measured in clinical practice.

E.	 Age, sex, dialysis vintage, CVD, NT-proBNP, cardiovas-
cular risk factors (DM, BMI, HDL, LDL, and smoking), 
and inflammatory markers (hsCRP, IL-6, and PTX3) to 
determine if the associations were independent of all 
factors above and significant markers of inflammation.

In these analyses, a p value < 0.05 was considered statisti-
cally significant.

In the CKD5-LD-RTx cohort, we also performed cross-
sectional analyses between the significant proteins from the 
discovery replication analyses and coronary artery calcifi-
cation by calculating the Spearman correlation coefficient 
and applying linear regression adjusted for age and sex. In 
these analyses, coronary artery calcification was included 
as a categorical variable (CAC < 400, CAC 400–1000 and 
CAC > 1000 Hounsfield units).

Risk prediction

To assess whether adding the proteomics data to an estab-
lished risk score can improve the prediction of cardiovascular 
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mortality, we used Lasso penalized Cox proportional haz-
ards regression [23] to select a parsimonious model that 
maximized discrimination performance whilst minimizing 
the number of proteins used for prediction. We used a modi-
fied version of the AROii CVM-score [24] (http://aro-score​
.askim​ed.com/) as our base model. The variables available 
in our dataset that were also included in the ARO risk score 
were: age, sex, history of CVD, DM, BMI, CRP, smoking 
status, hemoglobin, ferritin, serum albumin, serum calcium, 
serum creatinine, history of malignancy and cause of renal 
disease (diabetes, glomerulonephritis or other). The remain-
ing variables in the ARO risk score (dialysis-related vari-
ables) had not been retrieved in the majority of participants 
and could not be included. However, even though the AROii 
CVM-score performs best when all components of the score 
are included, its use is encouraged even in cases where some 
variables are missing [24]. We forced all available ARO risk 
score variables into the model and implemented Lasso selec-
tion with 10-fold cross-validation and default parameters 
with the cv.glmnet function in the R package glmnet. The 
sample was randomly split into a 60% training set and 40% 
validation set. The Lasso model was trained in the train-
ing set and all proteins there were included in the iteration 
that converged on the smallest cross-validated error were 
selected and tested in the separate 40% validation sample. 
Harrell’s C-index in the validation sample was calculated 
with the survConcordance function and stored. We repeated 
this procedure in 1000 random iterations and retained the 
top 50% of models ranked by C-index. The number of times 
each protein was included in the predictor selection was plot-
ted in histograms to identify cut-off frequencies between top 
predictors and less important predictors; the more often a 
protein was selected by one of these top-performing models, 
the higher was its presumed importance for predicting the 
outcome. Finally, we implemented a Cox regression model 
in the total sample with the final set of top predictors added 
to the risk score variables to assess prediction performance 
(C-index) and goodness-of-fit (log-likelihood test). The 
prediction analyses were performed in the MIMICK cohort 
only.

Results

Baseline characteristics

A summary of general characteristics of the MIMICK, SKS 
dialysis study and CKD5-LD-RTx cohorts is presented in 
Table 1.

After adjusting for age and sex in the MIMICK cohort, 
11 proteins showed nominally significant associations with 
cardiovascular mortality. In the order of level of significance, 
these included KIM-1, matrix metalloproteinase (MMP)-7, 

tumor necrosis factor receptor 2 (TNFR2), IL-6, MMP-1, 
brain-natriuretic peptide (BNP), suppression of tumorigenicity 
2 (ST2), hepatocyte growth factor (HGF), TNF-related apop-
tosis inducing ligand receptor-2 (TRAIL-R2), spondin-1, and 
fibroblast growth factor 25 (FGF25) (Table 2). The associa-
tion between all 92 proteins and cardiovascular mortality is 
depicted in supplementary figure 1.

After Bonferroni correction for multiple testing, only 
plasma kidney injury molecule-1 (KIM-1) was significantly 
associated with cardiovascular mortality (hazard ratio, HR, 
per SD increase, 1.80, 95% confidence interval (CI) 1.33–2.44, 
p < 0.0001. In the SKS replication cohort, KIM-1 was also 
significantly associated with an increased risk of cardiovas-
cular mortality (HR per SD increase 1.45, 95% CI 1.03–2.05, 
p = 0.034). In additional multivariable models in the MIMICK 
cohort, raised KIM-1 levels were significantly associated with 
cardiovascular mortality after adjustment for age, sex, dialysis 
vintage, CVD, NT-proBNP, cardiovascular risk factors (DM, 
BMI, HDL, LDL, and smoking), and inflammatory markers 
(hsCRP, IL-6, and PTX3; model A–E, Table 3).

In the mechanistic analyses in the CKD5-LD-RTx-
cohort, there was a significant correlation between higher 
plasma KIM-1 and higher CAC-score (Spearman rho = 0.27, 
p = 0.008). A significant association was also seen between 
higher plasma levels of KIM-1 and higher CAC-score when 
adjusting for age and sex in linear regression (β-coefficient per 
SD increase in protein abundance 0.11, 95% CI 0.01–0.20, 
p = 0.03).

In the MIMICK cohort, we implemented Lasso penalized 
regression across 1000 iterations each splitting the total sample 
into a 60% training set used to build the Lasso model, and a 
separate 40% validation set used to estimate the C-index. A 
clear cut-off that selected KIM-1 as the most important protein 
was apparent in a histogram of how often proteins had been 
selected by the best-performing 500 models (Fig. 1). Protein 
KIM-1 was selected by 63 of the top models. A second cut-
off for top predictors was apparent (marked in Fig. 1), that 
selected KIM-1, FGF-23, IL-6, ST-2, MMP-7, BNP, MMP-1, 
HGF and MMP-3.

In the total sample, the baseline model (AROii CVM-
score) achieved a C-index of 0.777 (95% CI 0.692–0.862). 
The addition of KIM-1 improved prediction performance to 
C = 0.799 (95% CI, 0.714–0.884) and led to better model fit 
(p = 0.0012). Addition of the nine proteins that were nomi-
nally associated with CVD mortality to the AROii CVM-score 
achieved C = 0.823 (95% CI, 0.738–0.909) and a better model 
fit (p = 4.56 × 10−4).

http://aro-score.askimed.com/
http://aro-score.askimed.com/


115Journal of Nephrology (2019) 32:111–119	

1 3

Discussion

We used a novel targeted proteomics assay to explore asso-
ciations between 92 cardiovascular disease-related proteins 
in plasma and cardiovascular mortality in a discovery cohort 
of prevalent hemodialysis patients. Eleven proteins were 
associated with cardiovascular death at nominal signifi-
cance. Only plasma KIM-1—also denoted as T cell immu-
noglobulin and mucin domain (TIM) or Hepatitis A virus 
cellular receptor 1 (HAVCR-1)—predicted cardiovascular 
mortality after correction for multiple testing. This associa-
tion remained statistically significant even after adjustment 
for age, sex, dialysis vintage, prevalent CVD, NT-proBNP, 
other cardiovascular risk factors, and various inflammatory 
markers. We then replicated the significant findings in an 
independent cohort in which KIM-1 also showed a signifi-
cant association with cardiovascular mortality after adjust-
ing for sex and age. Furthermore, higher plasma KIM-1 was 
associated with increased coronary artery calcification in a 
cross-sectional analysis in an independent cohort of CKD 
5/5D patients undergoing living donor renal transplanta-
tion. The addition of plasma KIM-1, alone, or of a 9-protein 
risk score to the modified AROii CVM-score appeared to 

Table 1   Baseline characteristics 
of patients from the different 
cohorts

Normally distributed continuous variables are presented as mean ± standard deviation, skewed continuous 
variables as median (interquartile range) (25th–75th percentile), and categorical variables as percentage
MIMICK Mapping of Inflammatory Markers in Chronic Kidney disease, SKS dialysis study incident and 
prevalent hemodialysis arm of the Salford Kidney Study, ESRD end-stage renal disease, hsCRP high-sen-
sitivity C-reactive protein, IL-6 interleukin 6, PTX3 pentraxin 3, NSAID nonsteroidal anti-inflammatory 
drugs, ACE angiotensin-converting enzyme, ASA acetylsalicylic acid, ACEi/ARB angiotensin-converting 
enzyme inhibitor/angiotensin receptor blocker, HDL high density lipoproteins, LDL low density lipopro-
teins, N.A. not available

Variable MIMICK-cohort SKS dialysis study ESRD-RT-cohort

N 183 186 89
Sex (% female) 55 73 37
Age (years) 63 ± 14 62 ± 14 46 ± 14
BMI (kg/m2) 25 ± 5.0 28 ± 6.2 25 ± 2.0
Dialysis vintage, months 44 ± 49 31 ± 3.5 1.1 ± 1.8
hsCRP (mg/l) 6.4 (2.6–22) 18 ± 39 0.8 (0.4–2.4)
IL-6 (pg/ml) 8.9 (5.0–15) N.A. 1.1 (0.5–2.1)
PTX3 (ng/ml) 10 (7.1–17) N.A. 3.9 (2.0–6.4)
HDL (mmol/l) 1.4 ± 0.5 N.A. 1.4 ± 0.5
LDL (mmol/l) 2.6 ± 0.9 2.0 ± 1.1 2.5 ± 0.95
Hemoglobin (g/l) 118 ± 13 N.A. 115 ± 14
Ferritin (µg/l) 485 ± 361 550 ± 354 N.A.
Serum albumin (g/l) 35 ± 5 39 ± 3.8 36 ± 3.6
Serum calcium (mmol/l) 2.5 ± 0.2 2.4 ± 0.17 2.3 ± 0.2
Creatinine (µmol/l) 770 ± 211 716 ± 254 759 ± 237
NT-pro-BNP (pg/l) 14 ± 13 0.4 ± 0.5 5.2 ± 0.4
Smoking (%) 17 N.A. 46
Diabetes mellitus (%) 25 71 14
Cardiovascular disease (%) 19 42 18

Table 2   Associations between circulating protein markers and cardio-
vascular mortality in hemodialysis patients (MIMICK cohort)

HR and 95% CI are given for an age and sex adjusted model
p < 0.05 was considered statistically significant
CI confidence interval, HR hazard ratio, MIMICK Mapping of Inflam-
matory Markers in Chronic Kidney disease cohort, TNF tumor necro-
sis factor

Cardiovascular mortality Age and sex adjusted

Protein HR (95% CI) p

Kidney injury molecule-1 1.80 (1.33–2.44) 0.0001
Matrix metalloproteinase-7 2.54 (1.43–4.52) 0.002
Tumour necrosis factor receptor 2 12.6 (2.19–66.0) 0.004
Interleukin 6 1.56 (1.14–2.15) 0.005
Matrix metalloproteinase-1 1.62 (1.13–2.32) 0.008
Brain natriuretic peptide 1.62 (1.03–2.33) 0.009
Suppression of tumorigenicity 2 1.63 (1.13–2.35) 0.009
Hepatocyte growth factor 1.37 (1.05–1.79) 0.02
TNF-related apoptosis-inducing 

ligand receptor 2
1.87 (1.10–3.18) 0.02

Spondin-1 1.43 (1.05–1.94) 0.02
Fibroblast growth factor 25 3.09 (1.03–9.22) 0.04
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improve the risk prediction for cardiovascular mortality, but 
larger studies are needed to draw firm conclusions on the 
clinical utility.

Previous large-scale proteomic efforts in CKD patients 
are scarce and have primarily utilized urine samples for the 
proteomics analyses [25–27], with a few exceptions [28]. To 
a limited degree, small proteomics-based studies have been 
performed using plasma samples in CKD5 patients [29].

KIM-1, a type I cell membrane glycoprotein initially 
identified in the African green monkey, has been shown to 
regulate immune cell responses to infections [30], autoim-
mune and allergic diseases [31] and antitumor effects [32]. 
The expression of KIM-1 is highly upregulated in the proxi-
mal tubule of the kidney after injury, and urinary levels of 
KIM-1 have been demonstrated as a promising biomarker in 
both acute and chronic kidney disease as well as a predictor 
for cardiovascular outcomes in CKD patients [33–37] and 
in the general population [38]. However, few studies have 
evaluated blood-borne KIM-1 as a biomarker. Two previous 
cross-sectional reports demonstrated elevated plasma KIM-1 
levels in both acute and chronic kidney disease patients [39] 
and higher levels with increasing severity of CKD [40]. In 
longitudinal analyses, higher plasma KIM-1 was associated 
with a more rapid decline in glomerular filtration rate (GFR) 
[40] and a greater risk for ESRD [41]. Importantly, we are 
not aware of any previous study reporting the association 
between plasma KIM-1 and cardiovascular mortality in 
hemodialysis patients.

The detection of KIM-1 in plasma or urine has been 
attributed to loss of tubular cell polarity, compromised tran-
sepithelial permeability, and cytoskeletal disruption in renal 
microvascular cells [40]. Several other studies have pointed 
to an upregulated expression and increased release of KIM-1 
in renal tubular cells after injury [36, 42, 43]. The potential 
expression of KIM-1 in other tissues, such as within the 
vasculature, needs consideration since all patients in this 
study had a narrow and very low range of eGFR. Our find-
ing of an association between plasma KIM-1 and coronary 
artery calcification in the CKD5-LD-RTx-cohort implies 
that circulating KIM-1 is also a marker for atherosclerotic 
disease, which might explain the strong independent asso-
ciation with cardiovascular mortality [44]. KIM-1 has been 
implicated in the mitogen-activated protein kinase (MAPK) 
signaling pathway [39] which is involved in the activation 

Table 3   Associations between circulating protein marker kidney 
injury molecule-1 (KIM-1) and cardiovascular mortality in hemodi-
alysis patients (MIMICK cohort)

Values are hazard ratios (HR) with 95% confidence intervals (CI) 
with hemodialysis as dependent variable and the 92 protein markers 
as independent variables in separate models
p < 0.05 was considered statistically significant
MIMICK Mapping of Inflammatory Markers in Chronic Kidney dis-
ease cohort, CVD cardiovascular disease, NT-proBNP N-terminal 
prohormone of brain natriuretic peptide, DM diabetes mellitus, BMI 
body mass index, HDL high density lipoproteins, LDL low density 
lipoproteins, CRP C-reactive protein, IL-6 interleukin 6, PTX3 pen-
traxin-related protein
a Adjusted for age and sex
b Adjusted for age, sex, dialysis vintage
c Adjusted for age, sex, dialysis vintage, CVD, and NT-proBNP
d Adjusted for age, sex, dialysis vintage, CVD, NT-proBNP, and car-
diovascular risk factors (DM, BMI, HDL, LDL, and smoking)
e Age, sex, dialysis vintage, CVD, NT-proBNP, cardiovascular risk 
factors (DM, BMI, HDL, LDL, and smoking), CRP, IL-6, and PTX3

Protein Cardiovascular mortality

KIM-1 HR (95% CI) p

Model Aa 1.80 (1.33–2.44) 0.0001
Model Bb 1.75 (1.27–2.42) 0.0006
Model Cc 2.12 (1.50–3.01) 0.00002
Model Dd 2.07 (1.42–3.02) 0.0001
Model Ee 2.12 (1.43–3.16) 0.0002

Fig. 1   Histogram showing pro-
teins most frequently selected as 
top predictors by the 500 best-
performing Lasso penalized 
Cox models, e.g. protein KIM-1 
was selected by 63 of the top 
models. The red line indicates 
the arbitrary cut-off for the 
prediction models chosen in 
this study for KIM-1, as well as 
the next most frequent proteins, 
FGF-23, IL-6, ST-2, MMP-7, 
BNP, MMP-1, HGF and MMP-
3. Proteins that are not shown in 
the histogram were not selected 
by any of the 500 best-perform-
ing solutions
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of macrophages in kidney injury and fibrosis [45] but also 
in cardiovascular pathology with both promoting and sup-
pressing effects [46–48]. Whether circulating KIM-1 reflects 
these pathways remains to be established.

Eleven of the 92 proteins showed nominally significant 
associations with cardiovascular mortality. Although we 
could not establish causality, possible underlying mecha-
nisms might involve inflammation (IL-6, and ST2), extracel-
lular matrix remodeling (MMP-1 and MMP-7), apoptosis 
(TRAIL-R2), increased ventricular overload due to hydric 
retention (NT-proBNP), and cell growth, cell motility, and 
morphogenetic (HGF) properties [49, 50].

Better discrimination of high risk vs. low risk hemodialy-
sis patients could be of great value in tailoring individual-
ized treatments, in decision-making for transplantation, but 
also to refine inclusion and exclusion criteria for clinical tri-
als thus enabling more powerful cost-effective designs. For 
this purpose, a new risk score was recently introduced (the 
AROii CVM-score) [24]. Even though all components of 
the AROii CVM-score were not available in the MIMICK-
cohort, the modified version of the score performed at least 
as well in our study as the complete score did in the original 
article C-statistics of the modified AROii CVM-score in 
MIMICK were 0.78 compared to 0.72–0.74 for the complete 
score in the original article [24]. As a clear improvement in 
C-statistics was seen when adding data on plasma KIM-1 or 
the nine most informative plasma proteins to the modified 
AROii CVM-score, our data support the notion that prot-
eomic profiling has potential for improving cardiovascular 
risk prediction in hemodialysis patients. Yet, these findings 
should be interpreted with caution as our study was under-
powered to detect statistically significant improvements in 
C-statistics.

Strengths of our study include the longitudinal design 
and the fact that we were able to replicate the association 
between plasma KIM-1 and relevant cardiovascular phe-
notypes in independent patient populations. Limitations 
include the fact that the PEA technique does not allow abso-
lute quantification of the proteins, and so determining cut-off 
values of the different proteins is less straightforward in a 
clinical setting. Second, the delay between sampling and 
analysis may have affected protein levels, but sample col-
lection was undertaken in a consistent fashion and samples 
stored unthawed at a minimum of − 70 °C, which should 
keep pre-analytical biases to a minimum. If anything, any 
such bias would dilute associations. In fact, the associations 
were identical after adjustments for freezer time (data not 
shown). Finally, the generalizability of our results may be 
limited since our study sample predominantly consisted of 
individuals of particular age groups and European descent.

Our proteomics approach identified plasma KIM-1 as 
a promising prognostic marker that merits further investi-
gation. Our results imply that KIM-1 is generated also in 

tissue(s) other than the kidney and that it may have a poten-
tial pathogenic role in premature vascular ageing processes. 
Furthermore, our data encourage additional efforts to evalu-
ate the utility of targeted proteomic profiling in routine clini-
cal care of hemodialysis patients.
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