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Locking and loading the bullet against
micro-calcification
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Abstract

Aims: Despite recent medical advances, cardiovascular disease remains the leading cause of death worldwide. As

(micro)-calcification is a hallmark of atherosclerosis, this review will elaborately discuss advantages of sodium fluoride

positron emission tomography (PET) as a reliable cardiovascular imaging technique for identifying the early onset of

vascular calcification (i.e. locking onto the target). We assess state-of-the-art meta-analysis and clinical studies of possible

treatment options and evaluate the concept of vitamin K supplementation to preserve vascular health (i.e. loading the

bullet).

Methods and results: After a structured PubMed search, we identified 18F-sodium fluoride (18F-NaF) PET as the most

suitable technique for detecting micro-calcification. Presenting the pros and cons of available treatments, vitamin K

supplementation should be considered as a possible safe and cost-effective option to inhibit vascular (micro)-calcification.

Conclusion: This review demonstrates need for more extensive research in the concept of vitamin K supplementation

(i.e. loading the bullet) and recommends monitoring the effects on vascular calcification using 18F-NaF PET (i.e. locking

onto the target).
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Introduction

Despite recent advances in interventional medicine, car-
diovascular disease is still the leading cause of death
worldwide, exceeding cancer mortality.1,2 After the rec-
ognition of vascular calcification as a hallmark of ath-
erosclerosis, emerging data agree on classifying
coronary artery calcification (CAC) score as an inde-
pendent cardiovascular risk factor.3 However, the risk
ratio of CAC is currently unavailable, because a large
patient population falls under low levels of CAC,
undetectable by conventional methods (i.e. low
dose non-contrast computed tomography (CT)
calcium score).

Vascular calcification was considered a passive pro-
cess; however, recent evidence shows that it is actively
regulated with a delicate balance between calcification
promoting and inhibiting factors.4 Most initiators of
extracellular matrix mineralization converge to the
secretion of extracellular vesicles by synthetic vascular
smooth muscle cells and macrophages.5 These sites pro-
vide the perfect nidus for nucleation and elongation of

hydroxyapatite crystals, which will eventually destabil-
ize the plaque.6 Hence, early identification of vascular
calcification may allow for a better stratification into
high-risk individuals with poor outcomes.7

In this review, we discuss the most promising meth-
ods of vascular imaging (i.e. Part 1) and key emerging
concepts in the treatment of vascular calcification (i.e.
Part 2).
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Part 1: Micro-calcification as an

independent risk factor

There is increasing evidence that (micro-)calcification is
not merely a passive bystander of atherosclerosis, but
actually plays an active role in plaque progression and
destabilization.8 In vitro studies showed that calcium
phosphate crystals smaller than 1 mm can activate
macrophages and induce vascular smooth muscle cells
to undergo programmed cell death.9 The latter phe-
nomenon further accelerates atherogenesis, by provid-
ing a nidus for further calcification and medial
degeneration.10 This vicious cycle increases vulnerabil-
ity of atherosclerotic plaques.11 So called ‘spotty calci-
fication’ on CT, which is the imaging equivalent of
micro-calcification, has been associated with increased
plaque vulnerability in coronary artery disease.12 On
the contrary, in patients with stable coronary artery
disease, completely calcified, more solid lesions are
more prevalent.13

Agatston et al. linked the sensitivity, specificity and pre-
dictive values of total CAC score with increased age.14 A
high CAC score (�1000 Agatston units) in asymptomatic
patients seems a better predictor for coronary events than
severe perfusion abnormalities.15 Hence, for more than a
decade, CAC score has been in clinical practice for detec-
tion of subclinical disease and for stratification of asymp-
tomatic individuals.7 Stratifying based on CAC score
reduces the number needed to treat to prevent one ischae-
mic stroke or transient ischaemic attack from 229
(CAC¼ 0) to 68 (CAC>100).16 Moreover, in an observa-
tional study of 25,253 asymptomatic patients, a CAC score
higher than 1000 was correlated with a 16% lower 10-year
survival rate, even after the adjustments for risk factors,
such as age, hypercholesterolaemia, diabetes, smoking,
hypertension and a family history of premature coronary
heart disease.3

However, the additional risk or the relative risk of
CAC is yet unreliable.17 This is due to the fact that the
already established Agatston calcification score is able
to assess CAC density, which seems to be inversely
associated with cardiovascular risk.18 Moreover, there
is a current paradigm shift from CAC density to CAC
volume as a positive predictor for cardiovascular
events. Recent studies support the notion that molecu-
lar imaging techniques, such as 18F-sodium fluoride
(18F-NaF) positron emission tomography (PET), are
complementary in detecting vascular calcification and
should be introduced to gain further information on
active micro-calcification in unstable plaques.19

Sodium fluoride-18: seeing the unseen
18F-NaF is a PET tracer with an interesting property:
the 18F is able to replace the hydroxyl groups of

hydroxyapatite, the very building block of (vascular)
calcification. This, combined with its small size and its
negligible plasma protein binding capacity, results in a
high target-to-background ratio (i.e. efficient targeting
capability) shortly after intravenous injection.20 Thin
nano-sized hydroxyapatite crystals provide a higher
surface area for 18F-NaF to bind to, in contrast to
the macroscopic counterpart, in which the tracer
cannot enter the inner core.20 Irkle et al. showed that
fluoride is better adsorbed by micro-calcified plaques
(i.e. nodules<50 lm) when compared with macro-cal-
cifications (i.e. nodules>50 lm).19 In the same study,
18F-NaF PET demonstrated a higher sensitivity then
CT, by detecting larger areas of active micro-calcifica-
tion sites.19 This makes 18F-NaF suitable for detecting
vulnerable sites by visualizing active micro-calcification
in contrast to stable macro-calcified plaques, which are
better detected by CT (Figure 1). Moreover, 18F-NaF
uptake in the coronary arteries is in close agreement
with CT markers for plaque vulnerability (e.g. plaque
attenuation<30 Hounsfield units).21

Indeed, the feasibility of 18F-NaF PET for in vivo
quantification of micro-calcification in the aorta as well
as in the coronary and carotid arteries as a feature of
culprit plaques has already been proven (Figure 2).22,23

In patients with myocardial infarction, 18F-NaF was
able to discriminate between culprit and non-culprit
plaques.22 Over the years, many studies used 18F-NaF
to acquire information about morphological and func-
tional properties of calcified plaques. All of them pro-
vided increasing evidence that this technique represents
a feasible option for imaging active micro-
calcification.24

When compared with 18F-fluorodeoxyglucose,
18F-NaF showed improved detection of culprit plaques
in thoracic aorta and coronary arteries.22,25 Therefore,
active micro-calcification, rather than vascular inflam-
mation, should be associated more strongly with car-
diovascular risk. This led Dweck et al. to conclude that
18F-NaF PET was the only currently available clinical
imaging approach that can non-invasively detect vascu-
lar micro-calcifications.26

By implementing hybrid PET/magnetic resonance
imaging (MRI), 18F-NaF has the opportunity to fully
exhibit its potential, by delivering data about the
state of micro-calcification alongside high-resolution
magnetic resonance images that can give a detailed
description of plaque burden (e.g. juxtaluminal lesions,
intra-plaque haemorrhage, lipid-rich necrotic core and
fibrous cap status) (Figure 1). CT fails to detect many
subtle Pseudoxanthoma elasticum-related abnormal-
ities, such as calcifications in the endo- or myocar-
dium.27 Although, 18F-NaF PET/MRI is currently
most used in studies that concern bone pathologies,
cardiovascular research has adapted this technique.28
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Ongoing trials are using hybrid 18F-NaF PET/MRI, for
example, BASIK-2 (NCT02917525), which assesses
vitamin K influence on calcific aortic valve stenosis.

However, additional scientific efforts are still
required until 18F-NaF can enter routine clinical prac-
tice as a tracer for vascular micro-calcification, but, as
mentioned above, available studies reveal a promising
future (Figure 2).22

Part 2: Available treatment options
against micro-calcification

Micro-calcifications have long been proposed as a
marker for vulnerable plaques. In silico models predict
that inclusions, located in a thin fibrous cap in an area
of high circumferential stress, can double the intensity
of initial stress.29 The most likely candidate for these
inclusions is micro-calcification. Bobryshev et al.
showed by quantification in ultrathin sections that
micro-calcifications are more present in vulnerable
compared with stable plaques.30 Based on data

generated by studies using 18F-NaF PET, active
micro-calcifications are now an established hallmark
of atherosclerosis and plaque vulnerability.17

In this context, an extensive list of potential medica-
tions that address vascular calcification has already
been compiled.31 However, almost half of the men-
tioned drugs have been studied only in preclinical
setups or lack extensive clinical research. Of all enlisted
drugs, bisphosphonates, phosphate binders, statins
and vitamin K seem to have the greatest potential
(Table 1).

Bisphosphonates and phosphate binders are an
attractive choice for their promise to attack the build-
ing blocks of micro-calcification, namely calcium
and phosphate. Bisphosphonates bind free calcium,
whereas phosphate binders prevent the absorption of
dietary phosphate, making it unavailable for incorpor-
ation into hydroxyapatite. A systematic review suggests
that bisphosphonates are able to favourably influence
calcium homeostasis within the vessel wall.32 However,
long-term administration of bisphosphonates may

18F-NaF PET

18F-NaF

CT

Time

Vitamin K supplementation

Inflammation Micro-calcification
Necrotic core Rupture

Macro-calcification

Vulnerable plaque

W
/o

 v
ita

m
in

 K
V

ita
m

in
 K

Figure 1. The superiority of locking with 18F-NaF and loading with vitamin K.

18F-NaF PET is able to identify earlier stages of atherosclerotic development (i.e. micro-calcification) in contrast to conventional CT

scans, which are detecting macro-calcifications. This micro-calcified state is ideal to start vitamin K supplementation, in order to

indirectly fight against calcification and to reduce cardiovascular risk.
18F-NaF: 18F-sodium fluoride; PET: positron emission tomography; CT: computed tomography; W/o: without

Florea et al. 3



cause severe adverse reactions, like osteonecrosis of the
jaw, probably by reducing macrophage and osteoclast
viability.43 In the case of phosphate binders, a meta-
analysis that examined 104 studies involving 13,744
adults found no cardiovascular protection for dialysis
patients and uncertain effects for the rest of a chronic
kidney disease population.33

Over recent years, the focus of potential cardiovas-
cular protective medications was set on statins. Besides
lowering cholesterol, numerous medical trials showed
positive, pleiotropic, effects of statins on plaque stabil-
ization and anti-inflammatory properties. However,
several studies revealed that they seem to negatively

influence the progression of calcification.34 Moreover,
recent studies suggest that statins promote formation of
hydroxyapatite crystals within the plaque by inhibiting
activity of vitamin K2.35

Considering that bisphosphonates, phosphate bin-
ders and statins have already been extensively studied,
sowing inconsistent results (i.e. phosphate binders)
or detrimental side effects (i.e. bisphosphonates),
vitamin K supplementation might be considered as a
safe, cost-effective alternative for inhibiting vascular
calcification. Therefore, research evaluating potential
beneficial effects of vitamin K on vascular calcification
has gained more and more interest over recent years.44

Figure 2. Increased 18F-sodium fluoride (18F-NaF) uptake in culprit coronary artery lesion. In a patient with coronary artery disease,

invasive coronary angiography (a) showed non-obstructive disease in the right coronary artery. Corresponding 18F-NaF positron

emission tomography/computed tomography (b) showed a region of increased 18F-NaF activity (positive lesion, red line) in the mid-

right coronary artery (tissue-to-background ratio, 3.13) and a region without increased uptake in the proximal vessel (negative lesion,

yellow line). Radiofrequency intravascular ultrasound shows that the 18F-NaF negative plaque (c) is principally composed of fibrous and

fibro-fatty tissue (green) with confluent calcium (white with acoustic shadow) but little evidence of necrosis. On the contrary, the
18F-NaF positive plaque (d) shows high-risk features such as a large necrotic core (red) and micro-calcification (white).

Adapted from Joshi et al.22 with permission.

Table 1. Promising therapies for the future of treatment of vascular calcification.

Medication Mechanism of action Benefits against calcification References

Bisphosphonates Inhibit calcium metabolism Positive (detrimental side effects) 32

Phosphate binders Prevent absorption of dietary phosphate Questionable 34

Statins HMG-CoA reductase inhibitor Positive 35, 36

Vitamin K Cofactor in g-carboxylation of glutamate Promising (cost-effective) 43, 44, 47, 49–52
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Vitamin K: the magic bullet to fight vascular
calcification?

Vitamin K is paramount for the biological activation of
an array of proteins which are able to bind free calcium
via their g-carboxyglutamate-rich domains. Amongst
these vitamin K dependent proteins (VKDPs) are
liver-derived proteins with a significant role in haemo-
stasis (i.e. factors II, VII, IX and X and proteins C, S
and Z). In the last decade, several extra-hepatic VKDPs
have been discovered, with dispersed functions, includ-
ing bone metabolism (e.g. osteocalcin) and inhibition of
ectopic calcification (e.g. matrix g-carboxyglutamate
protein (MGP)).

Vitamin K is an unequivocal cofactor in the activa-
tion of VKDPs and it comes in two flavours: phyllo-
quinone (i.e. vitamin K1) and menaquinones (MKs, i.e.
vitamin K2). For purposes of nomenclature, MKs are
further sub-classified according to the number of
repeating prenyl units (i.e. MK-n, where n is the
number of repeating units).

In the case of vitamin K deficiency, a high-dose
supplementation of vitamin K carboxylates (i.e. acti-
vates) VKDPs with anti-calcification properties.
Plasma levels of dephosphorylated uncarboxylated
(i.e. inactive) MGP rapidly change after increasing
MK-7 intake.45 It is worth mentioning that vitamin K
supplementation does not induce a state of hypercoa-
gulability.46 Thus, a higher intake of vitamin K is not
associated with any negative reaction on the coagula-
tion cascade.

The detrimental effect of vitamin K antagonists (e.g.
warfarin) on cardiovascular and renal systems has
already been revealed.47 A considerable number of stu-
dies over the last two decades showed an association
between vitamin K supplementation and positive out-
comes in calcium metabolism. In most post-menopau-
sal women and chronic kidney disease patients there is
a paradoxical decline in bone calcium content, paral-
leled by an increase in vascular calcification. Vitamin D
is frequently used in combination with calcium supple-
mentation to protect against bone disease; however,
this treatment might accelerate vascular calcification.48

By activating MGP, vitamin K supplementation may
be the way out of this paradox. Indeed, supplementa-
tion with minerals (i.e. calcium, magnesium and zinc),
vitamin D and K showed beneficial effects on arterial
elasticity in post-menopausal women after a follow-up
of three years.49

Vitamin K seems to have beneficial effects on vascu-
lar calcification and thus indirectly fights cardiovascu-
lar disease, yet supporting vascular health (Figure 1).
Poor vitamin K status correlated with intensive CAC in
patients with high blood pressure, even when under
antihypertension medication.36 Meanwhile, when

compared with control, vitamin K1 supplementation
slows down the progression of calcification in the cor-
onary arteries after three years and in the aortic valve
after one year.37,50 Moreover, as it is known that bone
morphogenetic proteins promote the inflammation in
atherogenic conditions, vitamin K supplementation
may also improve vascular health by directly activating
MGP, the natural inhibitor of the pro-apoptotic bone
morphogenetic protein 2.51

Prospective population-based trials linked the
increased consumption of MKs with a reduced rela-
tive risk of coronary heart disease mortality (risk
ratio¼ 0.43 with a 95% confidence interval of
0.24–0.77).38 Moreover, a recent meta-analysis con-
firmed these findings and concluded that higher diet-
ary vitamin K consumption is associated with a
lower risk of coronary heart disease.52 A more in-
depth study also observed an inverse association
between MK intake (but not for vitamin K1
intake) and the risk of coronary heart disease; this
association was mainly due to subtypes MK-7, MK-
8 and MK-9.39 Indeed, MK-7 supplementation was
also associated with improved MGP levels in chronic
kidney disease patients and with decreased arterial
stiffness in healthy postmenopausal women.40,41

Moreover, MK-7 supplementation showed a benefi-
cial effect on arterial stiffness in renal transplant
recipients with stable graft function.42 However,
available data from randomized clinical trials is
insufficient to argue in favour of an increase in the
recommended daily dose of vitamin K or its intro-
duction in clinical practice. With progress in ongoing
clinical trials new supporting information will come
to light on how beneficial vitamin K supplementa-
tion (i.e. vitamin K1 and MK-7) is in cardiovascular
disease (i.e. VitaK-CAC NCT01002157, iPACK-HD
NCT01528800, VitaVasK NCT01742273 and
BASIK2 NCT02917525).

Conclusion: locking with 18F-NaF and
loading with vitamin K

Currently, the significant impact of 18F-NaF PET in
non-invasively identifying the early onset of vascular
calcification is gaining more and more attention. In
addition, emerging data are positive about the up-
and-coming concept of vitamin K supplementation to
combat micro-calcification. Here, we raise awareness of
the need for more extensive clinical trials using vitamin
K to promote vascular health. These studies should
consider the use of 18F-NaF PET for monitoring
active micro-calcifications.

Vitamin K emerges as a suitable, cost-effective bullet
that can and should be loaded after targeting micro-
calcification with 18F-NaF PET.

Florea et al. 5



One-sentence summary

Vitamin K emerges as a suitable, cost-effective, bullet
that can and should be loaded after targeting micro-
calcification with 18F-NaF PET.
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