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Introduction

Atherosclerosis is characterized by the formation of plaques 
in arterial walls (1). These atherosclerotic plaques can cause 
narrowing of the arterial lumen, reducing the amount of 
oxygen-rich blood reaching the organs, and in case of severe 
luminal stenosis, cause perfusion defects. More importantly, 
these plaques can rupture and cause thrombus formation 
and embolization, which can result in myocardial infarction 
or stroke (1).

Cardiovascular diseases (CVDs) are the number one cause 

of death globally. Of the 18 million people who died from 
CVDs in 2016, 85% died from a heart attack or stroke (2).  
Apart from the mortality and morbidity, CVDs are also 
a huge economic burden. The global costs for CVDs are 
estimated to rise from US $863 billion in 2010 to US $1,044 
billion in 2030 (3).

Numerous factors such as increased levels of low-density 
lipoproteins (LDL), elevated blood pressure, higher levels 
of hemostatic factors, family history of CVD, gender (4)  
unhealthy diet, lack of exercise and smoking (5) have 
been recognized as risk factors for the development of 
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atherosclerosis. 
Atherosclerotic plaques most often develop in regions 

with arterial damage, curvatures or bifurcations with 
disturbed blood flow. The wall shear stress exerted by 
blood flow in these regions is decreased. Endothelial 
cells exposed to lower wall shear stress are nonuniformly 
shaped, resulting in poor cell to cell contact (6,7), making 
these sites more susceptible to LDL extravasation across 
the endothelial layer. The deposited lipoproteins undergo 
oxidative modification in the intimal layer, inducing an 
inflammatory response (8). Monocytes from the lumen and 
smooth muscle cells (SMCs) also migrate to the intimal 
layer. The oxidized LDL accumulates in monocytes-
derived macrophages, transforming them into foam 
cells. Foam cells undergo apoptosis and form a lipid-rich 
necrotic core (LRNC). SMCs in this pro-inflammatory and 
hyperlipidemic environment produce extracellular matrix 
which forms the fibrous tissue of the plaque including the 
fibrous cap overlying the LRNC. Metabolic activity from 
macrophages in the intimal layer creates an increased oxygen 
demand. This state of hypoxia triggers angiogenesis (9).  
New microvessels grow from the adventitia into the plaque 
to supply oxygen and other nutrients to the developing 
lesion (9,10). These microvessels have poor structural 
integrity and blood-derived inflammatory cells can easily 
leak through the endothelial cell layer further contributing 
to plaque inflammation. The immature microvessels 
have also been suggested to contribute to intraplaque 
hemorrhage (IPH) (11), although it was recently shown that 
plaques with IPH show less leaky plaque microvessels (12). 
Micro-calcifications arising from extracellular vesicles from 
macrophages and SMCs (13,14) can also be found in the 
developing atherosclerotic plaque. 

A plaque prone to rupture is referred to as a vulnerable 
plaque. A vulnerable plaque is characterized by the presence 
of a large LRNC, inflammation, microvasculature, IPH, 
and a thin or ruptured fibrous cap (15). Plaque rupture 
is the underlying cause in approximately 60% of sudden 
coronary deaths (16) and approximately 20% of ischemic 
strokes (17). For patients with carotid artery disease, the 
onset of cerebrovascular symptoms and degree of stenosis 
are the main deciding factors to select the appropriate 
treatment. A stenosis of <50% is categorized as mild, 50% 
to 69% as moderate and 70% to 99% as severe according 
to NASCET criteria (18). Based on clinical trials performed 
in the 1990’s, for symptomatic patients with 50% or 
higher stenosis, the number of patients needed to undergo 
carotid revascularization to prevent one ipsilateral stroke in  

5 years is 9 for men versus 36 for women (19). Studies have 
shown that apart from degree of stenosis, other vulnerable 
plaque components can be used as independent predictors 
of cerebrovascular events (20-23). A recent meta-analysis 
by Schindler et al. showed that the presence of IPH in carotid 
plaques is an independent risk predictor for ipsilateral ischemic 
stroke in both symptomatic and asymptomatic patients that is 
stronger than any known clinical risk factor (20).

Non-invasive imaging provides tremendous opportunities 
to identify vulnerable plaques (24-26). Magnetic resonance 
imaging (MRI), with its superior soft tissue contrast is ideal 
to identify vulnerable plaque components, although this 
is still challenging for coronary plaques. A meta-analysis 
by Gupta et al. (23) found that IPH, LRNC and thin or 
ruptured fibrous cap as determined by MRI, demonstrated 
a hazard ratio of 4.59 [95% confidence interval (CI), 
2.91–7.24], 3.00 (95% CI, 1.51–5.95), and 5.93 (95% CI, 
2.65–13.20) respectively, for future stroke or transient 
ischemic attack. Positron emission tomography (PET) with 
radiolabeled tracers can visualize the molecular changes that 
occur in a plaque. Marnane et al. (27) and Kelly et al. (21) 
showed that 18F-FDG uptake on PET can independently 
predict recurrent stroke. The development of hybrid 
PET/MRI have opened new avenues for early diagnosis, 
improved risk stratification and treatment evaluation of 
patients with atherosclerosis.

The aim of this paper is to review the current status and 
future potential of hybrid PET/MRI of atherosclerotic 
plaques. The advantages and disadvantages of different types 
of hybrid PET/MRI systems are summarized. Technical 
developments which can further improve cardiovascular 
PET/MRI are discussed. An overview of clinical PET/MRI 
studies in patients with coronary and carotid artery disease 
is given. Finally, we discuss the future potential of PET/
MRI for imaging atherosclerosis. 

PET, MR and PET/MRI

MRI

MRI is based on magnetic properties of protons. When a 
patient is shifted into the scanner, a small net magnetization 
will arise in the patient in the direction of the external 
magnetic field of the MRI system. This net magnetization 
can be manipulated using radiofrequency (RF) pulses in 
combination with magnetic field gradients. After changing 
the net magnetization with an RF coil, relaxation of the 
net magnetization back to equilibrium will occur and the 
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change in transversal magnetization is measured with an 
RF coil. These relaxation processes, i.e., T1 (longitudinal 
direction) and T2 relaxation (transversal direction), can 
be used to generate T1 weighted (T1w) or T2 weighted 
(T2w) images. Numerous MRI pulse sequences have been 
developed to optimize the signal, contrast or to shorten the 
scan time (28). 

PET imaging 

In PET imaging, patients are injected with a radiolabeled 
tracer, which emits positrons. A positron subsequently 
annihilates with an electron producing two photons moving 
in the opposite direction, which are detected by the PET 
detectors, creating an image of the tracer concentration 
inside the patient. As the annihilation photons pass through 
different tissues on their way to the PET detector, they get 
attenuated. Photon attenuation can cause severe artifacts 
in PET images and therefore, needs to be corrected. 
Attenuation correction is performed using attenuation 
maps. These maps represent the attenuation coefficients 
(µ) of different tissues. Standalone PET detectors use 
a transmission source with known activity to create an 
attenuation map (29). 

Commonly, PET images are quantified by calculating 
the standard uptake value (SUV) which is the ratio of 
activity concentration of a region of interest (ROI) to the 
whole-body activity concentration. Target to background 
ratio (TBR), which is the SUV in the tissue of interest 
normalized to blood-pool activity, is also used for 
quantification of PET images (30). Based on the temporal 
resolution of PET detectors, PET scanners can have time-
of-flight (TOF) capability, which allows the use of the 
time interval between the detection of the two annihilation 
photons to improve the estimation of where on the line 
of response the annihilation occurred. This improves the 
signal to noise ratio (SNR) and spatial resolution of the 
PET images (31,32). 

Sequential vs. simultaneous PET/MRI
Technical details about the development of PET/MRI 
systems have been previously reviewed (33). A major 
challenge in the development of hybrid PET/MRI systems 
was the functioning of the photomultiplier tubes (PMTs) 
in the strong magnetic field from the MRI (34). The first 
solution to this problem was the sequential PET/MRI 
approach with a bed that moves between the PET and 
MRI system. The distance between the two gantries and 

extra shielding around the PET components, ensures that 
the PET detectors are not affected by the strong magnetic 
field (35). Both systems can be present in the same room 
or in different rooms (36). This solution is relatively 
economical since no drastic changes in the design of the 
scanners is required. Also, PET performance is similar to 
PET in PET/CT scanners (37). In the two-room approach, 
attenuation maps are created using CT, whereas in the 
other approach, attenuation maps are created using MRI. 
Co-registration of PET and MR images is better than 
separate PET and MRI scans, but any motion from the 
patient between the scans can make image fusion difficult. 
Similarly, involuntary motion such as breathing or cardiac 
motion can cause misregistration between the two scans. 
Another disadvantage of this approach is that relatively 
larger rooms are required to host the scanner (38).

The second approach is an integrated PET/MR scanner, 
which allows simultaneous PET and MRI scans. The PMTs 
were replaced by avalanche photodiodes (APD) (39) or 
silicon photomultipliers (SiPMs) (40), which are not affected 
by magnetic fields. This approach suffers from even less 
misregistration errors. MRI-based motion information can 
be used for PET motion correction as well. Simultaneous 
scans also mean reduced scan time and thus more comfort 
for the patient. The SiPM based PET detectors have 
superior time resolution (0.4 ns) (34) enabling TOF PET 
capability (41). 

Attenuation correction for PET in PET/MRI

MR based attenuation correction in PET/MRI has been 
comprehensively reviewed by Mehranian et al. (42). 
Attenuation maps for the reconstruction of PET images 
were another challenge towards PET/MRI being widely 
accepted for clinical use. As contrast in CT images is based 
on differences in photon attenuation, CT images can 
be used to create attenuation maps (43). Contrarily, MR 
images are based on proton density and relaxation times 
of different tissues, and so cannot be directly used for 
creating attenuation maps. Additionally, in MRI scans it is 
challenging to differentiate between bone (high attenuation) 
and air (low attenuation). The field of view (FOV) of the 
MRI scanner in the transverse plane is typically smaller 
than the PET FOV, which can cause truncation artifacts. 
This truncation occurs in the off-center regions, such as 
the arms besides the body. Arms are a source of attenuation 
and need to be considered in the generation of attenuation 
maps. A common approach to generate attenuation maps 



1123Cardiovascular Diagnosis and Therapy, Vol 10, No 4 August 2020

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(4):1120-1139 | http://dx.doi.org/10.21037/cdt.2020.02.09

based on MR images is using an MRI Dixon sequence to 
create water and fat-based images, which are then pixelwise 
segmented into air, lung, fat and soft tissue. Linear 
attenuation coefficients are assigned to each tissue class (44).  
To visualize bones (short T2 times) ultrashort echo time 
(UTE) (45) and zero echo time (ZTE) (46) sequences can 
be used. One approach to counter truncated MR-based 
attenuation correction maps, is to use B0 homogenization 
using gradient enhancement (HUGE) (47). This technique 
utilizes an optimum readout gradient to compensate for 
B0 inhomogeneities and gradient non-linearities. Using 
this technique, an increase of up to 60 cm in FOV, and a 
change of up to 30% in SUV was reported (48). Template-
based attenuation correction technique utilizes an MR 
image as template and a co-registered PET attenuation 
template generated from transmission scans. Using non-
linear registrations, the MR template is first registered 
to the MR image of the patient and then the same 
registrations are used to transform the PET attenuation 
template into an attenuation map (36). The atlas-based 
approach uses an atlas with MR and matching CT images. 
The CT images are used to generate an attenuation atlas at  
511 keV. The MR images from the atlas are registered to 
the MR images of the patient under observation and the 
same transformation is applied to the CT based attenuation 
atlas. These transformed pseudo-CT images can be used 
as an attenuation map for the patient to reconstruct PET 
images. Any anatomical anomalies in the patient and their 
effects on attenuation are not taken into account with this 
method (49). Another approach exploits the fact that PET 
data contains both attenuation and activity information, 
and thus creates an attenuation map based on only PET 
data using a maximum likelihood attenuation and activity 
(MLAA) algorithm (50). One of the many uses of artificial 
intelligence (AI) based techniques in the imaging domain is 
image transformation, for instance transformation of MR 
images into pseudo CT images (51,52). Considering the 
creation of pseudo CT attenuation maps or MLAA µ-maps 
from MR images as an image transformation problem, deep 
learning presents a viable solution to create attenuation 
maps from different input sources (MR images, MLAA 
µ-maps, non-attenuation corrected PET images) (53-58). 

RF-coils are invisible on MR images but are a source of 
PET photon attenuation (59,60). The attenuation by the 
RF-coils needs to be considered when creating attenuation 
corrected PET images. For rigid coils such as the head and 
neck coil, CT or transmission-based attenuation maps can 
be used. However, surface coils such as the dedicated carotid 

coils are usually flexible and don’t have a fixed position, thus 
using a standard attenuation map is not straightforward. 
One solution is to use markers to locate the position and 
shape of the coil in MR images and subsequently use non-
rigid transformations to transform a CT based attenuation 
map of the coil (61). Another solution is to use dedicated 
PET/MRI coils which reduce photon attenuation for 
the ROI by making design changes and less attenuating 
materials (62,63). 

Numerous oncology studies have compared the 
diagnost ic  performance of  PET/MRI with PET/
CT. Consensus among these studies is that despite the 
differences in attenuation correction methods, statistically 
significant strong positive correlations between SUV 
measurements from PET/MR and PET/CT exist  
(64-66). It is important to note here that a significant 
underestimation (67) and overestimation (68) of SUV values 
on the PET/MRI have been reported. A limitation of these 
studies is that the order in which the PET/CT and PET/
MRI examination were performed was not randomized. 
The SUV values are also affected by pharmacokinetics, 
i.e., biological uptake and clearance, differences between 
scanner technologies, data processing algorithms, type of 
attenuation correction used, PET acquisition times and 
the time between tracer injection and the second scan 
(67,69,70).

Cardiovascular motion correction or 
compensation 

MRI 

For a detailed review on cardiac and respiratory motion and 
the techniques used to minimize or correct for motion, we 
refer to the following reviews (71-75). Vessel wall imaging 
requires sub-millimeter spatial resolution. Consequently, 
slight motion during image acquisition can already cause 
motion artifacts. Motion correction is especially important 
for coronary imaging. Apart from their small size, these 
vessels are constantly in motion because of breathing and 
cardiac motion. Carotid vessel wall MRI can also suffer 
from motion artifacts due to the pulsating motion of the 
arteries, effects of swallowing and patient motion. 

The scan time to perform high spatial resolution 
coronary artery imaging is too long to be performed 
within a single breath-hold for patients with coronary 
artery disease, which is why free breathing techniques 
are preferred (73). Free breathing acquisitions can be 
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acquired by measuring the respiratory signal with an external 
device (respiratory bellows) and performing prospective or 
retrospective respiratory gating (76). Another approach is the 
use of 1-dimensional (1D) MR navigators, positioned on the 
liver-diaphragm interface to perform respiratory gating and 
tracking (77). This 1D navigator measures the position of the 
liver-diaphragm interface, based on which the window with 
the least respiratory motion is selected. A major limitation 
of the 1D diaphragmatic navigator in combination with 
respiratory gating is that it leads to long and unpredictable 
scan times, due to low scan efficiency. Several self-navigation 
and image-navigator based techniques have been proposed to 
achieve 100% scan efficiency (no gating, no data rejection). 
1D self-navigation techniques extract respiratory motion 
information often from the repeatedly acquired k-space 
center line. The Fourier transform of this signal, referred to 
as superior inferior (SI) projection, is used for translational 
respiratory motion tracking. Each projection acquired is 
then compared to a chosen reference projection to estimate 
and to retrospectively correct for the SI position of the 
heart over time (78). Self-navigated signals estimate the 
motion from projection data that include static tissues 
and thus may affect the accuracy of the motion signal. 
2D and 3D image navigators (79-81) separate static and 
moving tissues and enable motion estimation/correction in 
multiple dimensions. These approaches can be self-gated 
(employing the startup echoes of the main acquisition) 
or based on acquiring low spatial resolution images every 
heartbeat before cardiac MR acquisition and have been used 
to correct for 2D/3D translational motion prospectively 
and retrospectively. These approaches can be combined 
with bin-to-bin non-rigid motion correction (incorporated 
directly in the reconstruction) (82-84) or respiratory-
resolved reconstruction (85,86) to account for the complex 
motion of the heart. Cardiac motion is commonly tackled 
using electro-cardiogram (ECG)-based gating. The ECG 
signal is used to identify the region of the cardiac cycle with 
the least motion, which is where the acquisition window is 
placed. This duration is generally not long enough to acquire 
the entire k-space in one go; therefore, the acquisition is 
done in a segmented fashion over multiple cardiac cycles. 
Alternatively, with free running techniques, acquisition is not 
performed in any particular phase of the cardiac cycle but 
throughout. The ECG signal is recorded simultaneously, to 
retrospectively sort the k‐space readouts into different bins 
for reconstruction (87). An alternative approach is to estimate 
cardiac phases from the self-gating signal directly as has been 
shown in several studies (88,89).

PET 

Detailed information on different sources of motion and 
how to minimize, characterize and compensate them for 
both PET and MRI can be found in reviews by Catana  
et al. (72) and by Munoz et al. (74). Like MRI, respiratory 
and cardiac motion are the two main sources of motion 
in cardiovascular PET imaging. Deriving the respiratory 
signal from an external device or from PET counts (90) 
allows binning of the PET data. Similarly, using the ECG 
signal, the cardiac cycle can also be divided into multiple 
phases. Individual bin data can be reconstructed, and then 
transformed using rigid or non-rigid transformations 
to a reference position, before being averaged into one 
static image. This approach is called the reconstruct-
transform-average approach (74,91). Another approach 
is the motion-compensated image reconstruction, where 
the transformations are incorporated in the PET system 
model, resulting in motion-corrected PET images after 
reconstruction (92,93). 

PET/MRI

Simultaneous PET/MRI provides a unique opportunity to 
apply MRI-based motion correction on both MRI and PET 
images. Munoz et al. (94) utilized a non-rigid respiratory 
motion-compensated CMRA approach (based on 2D iNAV 
for respiratory binning) to correct for respiratory motion 
induced cardiac motion in the simultaneously acquired 
PET and MR data. For the MR images, on average the 
visible length of the right coronary artery and left anterior 
descending artery increased by 45.53% and 75.45%, and 
sharpness by 56.44% and 51.11% respectively, when 
applying the proposed technique compared to no motion 
correction (Figure 1). For PET images the proposed 
technique outperformed no motion correction in terms of 
noise and mean SUV and outperformed a gated approach in 
terms of noise (Figure 2). 

Robson et al. used MR images to create cardiac and 
respiratory motion models, to correct for respiratory 
and cardiac motion in PET images (90). The motion-
corrected PET images were compared with non-motion-
corrected-non-gated and dual gated (respiratory and 
cardiac gated) PET images. The TBR and contrast to 
noise ratio (CNR) were significantly larger for motion-
corrected PET (2.8±0.9, 21±22) compared to non-
motion-corrected-non-gated PET (2.4±0.9, P=0.0001; 
15±13, P=0.02), while TBR was lower and CNR greater 
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compared to double-gated PET (3.2±0.9, P=0.04; 6±3, 
P=0.004). Küstner et al. used an MR self-navigation 
signal to train the respiratory signal which spanned the 
entire PET exam to serve as a more reliable respiratory 
motion estimate compared to the original respiratory 
signal from the external sensor. Using this method, the 
author reported an improvement of 22% in quantification 
and of 64% in delineation of malignant lesions on PET 
images after motion correction (95).

Imaging of carotid atherosclerosis 

MRI

For a detailed description of identification of plaque 
composition with MRI and for expert recommendations 

on MRI protocols for carotid vessel wall imaging, we refer 
to a recent white paper (26). The main components of 
plaque vulnerability can be identified using a combination 
of different MRI contrasts (96-99). Figure 3 shows an 
example of multi-contrast MRI of a patient with a carotid 
plaque. IPH is rich in methemoglobin which acts as an 
intrinsic T1 relaxation time shortening agent, so that IPH 
appears bright when visualized with a hyper T1 weighted 
(T1w) sequence (Figure 3A) such as a three-dimensional 
magnetization-prepared rapid acquisition gradient echo 
(MP-RAGE) sequence (96,100-102). A comparison between 
the performance of different T1w sequences [MP-RAGE, 
3D TOF and 2D fast spin echo (2D-FSE)] demonstrated 
that MP-RAGE has the highest sensitivity and specificity 
for detecting IPH (103,104). Calcifications can be identified 
as regions with a hypointense signal in TOF, T1w, proton 
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Figure 1 Coronary images from an oncology patient showing the left anterior descending artery and right coronary artery with motion 
correction (MC), only translational motion correction, and translational motion correction and non-rigid motion correction. Improvements 
in the visualization of the vessels are observed when applying translational MC, and further improvements are observed with translation and 
non-rigid MC. [Images reproduced with permission from Munoz et al. (94)].

Figure 2 Cross-sectional images of the myocardium for an oncology patient showing images with non-motion correction (NMC), gated, 
and motion-corrected PET images, alongside with profiles across the myocardium. Motion correction improves the sharpness of the 
myocardium compared to NMC and reduces noise compared to gated images [Images reproduced with permission from Munoz et al. (94)]. 
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density weighted (PDW) and T2w images (Figure 3D) (105). 
LRNC is characterized as a region within the bulk of the 
plaque that does not enhance on black blood T1w contrast-
enhanced MR images (CE-MRI) (Figure 3E) (106). The 
fibrous cap is scored as thick, when a continuous region 
with contrast enhancement separates the LRNC from the 
lumen. When the LRNC extends to the lumen, fibrous cap 
is scored as thin or ruptured (Figure 3E) (107,108). CE-MRI 
improves the contrast between the LRNC and the fibrous 
cap (109). Neo-vascularization is another vulnerable plaque 
component which can be visualized using pharmacokinetic 

modeling of dynamic contrast-enhanced MRI (Figure 4) 
(111,112). Plaque burden (plaque volume normalized to 
the total vessel volume) requires high contrast between the 
plaque and the lumen, which can be achieved using black 
blood T1w MRI sequences (113).

Currently, a carotid MRI exam to visualize different 
plaque components takes approximately 20–30 minutes. 
Multicontrast sequences allow the visualization of different 
vulnerable plaque components with a single acquisition 
and tremendously reduce scan time. One such sequence, 
simultaneous non-contrast angiography and intraplaque 

A B C

D E F

T1w TFE

Pre-contrast T1w TSE Pre-contrast T1w TSE Contours

TOF T2w TSE

Figure 3 Co-registered (A) T1w TFE, (B) TOF, (C) T2w TSE, (D) pre- and (E) post-contrast T1w TSE images of a plaque in the internal 
carotid artery; (F) displays the delineation of plaque components and the inner and outer vessel wall: red = lumen; green = outer vessel wall; 
yellow = LRNC; orange = ring of calcifications; remaining vessel wall area = fibrous tissue. Hyperintense signal in A, and high signal in B 
(with respect to surrounding muscle tissue) in the bulk of the plaque is indicative for IPH (asterisk in T1w TFE and TOF images). A ring 
of hypointense signal, indicative for calcifications, is observed in all weightings [orange in (F)]. The lipid-rich necrotic core (yellow contour) 
can be identified as a region within the bulk of the plaque which does not enhance on black blood T1w MRI [red asterisk in (E)]. The fibrous 
cap can be recognized as a region with signal enhancement on the post-contrast images between the lipid-rich necrotic core and the lumen. 
This region with enhancement is interrupted, indicating a thin or ruptured fibrous cap [arrow in (E)]. [Images reproduced with permission 
from Kwee et al. (22)].
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hemorrhage (SNAP), acquires hyper T1w black blood 
images and bright blood images with a single scan. Two 
separate studies of 13 and 54 patients with carotid plaques, 
compared the performance of SNAP with MP-RAGE and 
found that there was a moderate to very good agreement 
between the two sequences for the identification of IPH 
(κ=0.82, P=0.141 and κ=0.511, P=0.029, respectively), 
although the area of IPH detected by SNAP was 
significantly larger compared to MPRAGE in the latter 
study (17.9±18.2 vs. 9.2±10.5 mm2, P<0.001). A large study 
comparing SNAP with histology as gold standard still needs 
to be carried out. The degree of stenosis on the SNAP 
bright blood images was significantly correlated with that 
measured by TOF MR angiography (intraclass correlation 
coefficient =0.96, P<0.001), but validation with a clinical 
gold standard such as contrast-enhanced MR angiography 
(CE-MRA) is still lacking (114,115). 

Another multicontrast sequence, multi-contrast 
atherosclerosis characterization (MATCH) (116), acquires 
three different contrasts (hyper T1w black blood, grey blood 
and T2w black blood). In a study with 53 patients, MATCH 
showed results comparable to a conventional multicontrast 
protocol (TOF, T1w, T2w) in quantitative measures of 
luminal area, outer wall area, mean area of LRNC and loose 
matrix, while MATCH showed a larger mean area of IPH 
and calcifications. The performance of MATCH was not 
compared to a hyper T1w sequence such as MP-RAGE. In 
the same study, using carotid endarterectomy specimens 
from 13 patients as a reference, MATCH performed as well 
as the conventional sequences (TOF, T1w, T2w) in detecting 
IPH, LRNC, loose matrix, and calcifications with an 

acquisition time of only 2 ½ minutes (117). MATCH needs 
to be validated with histology in larger studies. 

PET

For detailed information on PET imaging of atherosclerosis, 
we refer to the following reviews (118-120). For imaging 
carotid atherosclerosis, 18-fluorodeoxyglucose (18F-FDG), 
a glucose analog, is often used as a surrogate marker for 
inflammation (Figure 5) (121-123). 18F-FDG is taken up 
non-specifically by all cells that consume glucose including 
skeletal muscles, which can cause hinderance in the 
visualization of tracer uptake in the vessel wall. Other tracers, 
including 64Cu-DOTATATE (124), 68Ga-DOTATOC (125),  
18F-Choline (126) and 68Ga Pentixafor (127), which are more 
specific for plaque inflammation, have been explored, but 
still need to be validated in larger studies. 18-fluorine 
sodium fluoride (18F-NaF) has been used to identify active 
calcification showing the potential to visualize micro-
calcifications which are too small to be seen on MRI or 
CT (128,129). HX4 (130) is another tracer, used to target 
hypoxia. 

Carotid PET/MRI patient studies

An overview of PET/MRI studies in patients with carotid 
and coronary artery disease is provided in Table 1. In 
carotid PET/MRI studies featured here, motion correction 
techniques were not utilized as carotid arteries are subject 
to only slight motion and five (124,127,133-135 of the seven 
studies used the Dixon sequence to create MR-based PET 

0.60

0.45

0.30

0.15

0.00

Figure 4 Maps generated from images acquired 1 week apart of a 70-year-old male. Parametric maps are overlaid on anatomic MR images, 
and voxel Ktrans values which reflect microvascular flow, permeability, and surface area, are color coded from 0 to 0.6 min-1. The parametric 
maps that are acquired on two different days are very similar indicating a high scan-rescan reproducibility. The necrotic core exhibits low 
Ktrans values at the bulk of the plaque, while the highly vascularized adventitia at the outer rim demonstrates high Ktrans values. Another region 
of higher Ktrans values is observed near the inner rim of the plaque. [Reproduced, with permission, from Gaens et al. (110)]. 
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attenuation maps. Fernandez-Friera et al. (131) quantified 
vascular inflammation using 18F-FDG sequential PET/MRI 
in femoral, aorta, carotid and iliac arteries in 755 individuals 
with known plaques detected during pre-screening with 
ultrasound and CT. A free breathing, 3D T1w spoiled 
gradient echo sequence was used for the whole-body MR-
based attenuation maps using three tissue classifications (soft 
tissue, lung and air). PET/MRI facilitated the acquisition 
of T1w and T2w black blood MR images to visualize the 
vessel wall and to classify plaques as lipid-rich, fibrous or 
mixed. Arterial inflammation was scored qualitatively as 
increased vascular 18F-FDG uptake by scoring the presence 
and number of locations with 18F-FDG uptake. SUVmax 
and TBRmax values at these locations were calculated. Fused 
PET/MR images were used to determine which plaques 
showed inflammation (18F-FDG uptake) and SUVmax 
and TBRmax was calculated for each plaque. The authors 
found arterial inflammation in 48.2% of the population 
and plaques on MRI in 90.1% of the population. Plaques 
with inflammation showed higher SUVmax and TBRmax 
values (P<0.001). They also reported that most uptake was 
found in plaque-free arterial segments on MRI (61.5%), 
suggesting arterial inflammation may be a precursor of 
atherosclerosis. 

Bachi et al. (132) used 18F-FDG simultaneous PET/
MRI to assess carotid inflammation and plaque burden 
in individuals with cocaine use disorder (iCUD), healthy 
volunteers and individuals with cardiovascular risk factors. 

TOF MRI was acquired to delineate the vessel lumen. A 3D 
SPACE sequence was used to acquire black blood images 
to quantify lumen, wall area and wall thickness. PET 
attenuation was corrected using a template-based method. 
The authors showed that iCUD and healthy controls 
showed mild to moderate plaque inflammation (1.6> TBR 
<3), whereas the iCUD group showed the thickest carotid 
vessel wall. 

Hyafil et al. (133) evaluated the morphological and 
functional features of non-stenotic carotid lesions 
in patients with cryptogenic stroke using 18F-FDG 
simultaneous PET/MRI. The MRI sequence protocol 
included 3D TOF angiography, T2w and pre- and post-
contrast T1w sequences. The prevalence of complicated 
plaques on MRI (AHA lesion type VI) was significantly 
higher in the ipsilateral carotid artery as compared to 
the contralateral side (39% vs. 0%; P=0.001), indicating 
that the plaque type was related to the clinical symptoms. 
Complicated atherosclerotic plaques were associated with 
higher 18F-FDG uptake (TBR =3.43±1.13 vs. 2.41±0.84, 
P<0.001). 

Pedersen et al. (124) demonstrated the feasibility of 
64Cu-DOTATATE as a molecular tracer of atherosclerotic 
plaque activity using simultaneous PET/MRI. To determine 
arterial wall thickness T1w, T2w and PDW MRI was 
acquired while TOF images were used to visualize luminal 
stenosis. SUVmean values were calculated to quantify tracer 
uptake. The authors showed that the uptake correlated 

Figure 5 (A) 18F-FDG PET image of the neck (left) of a patient with a carotid plaque; (B) a colour overlay of the PET image as displayed in 
(A) on the corresponding MR image. Anatomical information from MRI confirms 18F FDG uptake in the symptomatic carotid plaque (arrow), 
while hardly any uptake is shown in the contralateral asymptomatic carotid artery.

A B
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independently (P=0.031) with the CD163 positive 
macrophages. No correlation was found between 64Cu-
DOTATATE uptake and plaque burden as assessed on MRI 
(P=0.116). 

Li et al. (127) used 68Ga Pentixafor tracer which targets 
macrophages using simultaneous PET/MRI. TOF magnetic 
resonance angiography was performed for grading carotid 
luminal stenosis. The tracer showed high arterial uptake 
(TBRmax >1.7) in patients with cardiovascular risk factors 
with the mean TBRmax value of high-risk patients being 
significantly higher (TBRmax: 1.9±0.3 vs. 1.7±0.2, P<0.05 
high versus low risk, respectively). 

Li et al. (134) evaluated the reliability and accuracy of 
measuring 18F-FDG uptake on PET/MRI compared to 
PET/CT in 34 patients with carotid atherosclerotic plaques. 
A moderate correlation between carotid SUVmax on PET/
MRI versus PET/CT was observed (Spearman’s r=0.67, 
P<0.01). The SUVmax was significantly lower on PET/MRI 
than on PET/CT (2.3±0.6 vs. 3.1±0.6; P<0.01). TBRmax 
of plaque lesions was similar on PET/MRI and on PET/
CT (2.2±0.3 vs. 2.2±0.3; P=0.4) and showed a good mutual 
correlation (Spearman’s r=0.73, P<0.01). In this study, the 
patients were scanned first with PET/CT, followed by 
PET/MRI.

Ripa et al. (135) compared simultaneous PET/MRI 
to PET/CT for imaging the carotid arteries in patients 
with increased risk of atherosclerosis using 18F-FDG. 
3D TOF MR angiography was performed to determine 
luminal stenosis. Dark blood T1w, T2w and proton density 
weightings were also acquired to visualize the arterial 
wall. They showed that the mean difference for SUVmean 
and SUVmax was −0.18 (P<0.001) and −0.14 (P<0.001), 
respectively, showing small but significantly lower values 
with PET/MRI. In this study the patients underwent a 
PET/MRI first followed by a PET/CT. 

Coronary vessel wall imaging 

MRI

Several studies have shown the efficacy of coronary MR 
angiography (CMRA) to detect coronary artery stenosis 
(138-140). Due to the tortuous nature and constant 
movement of the coronary arteries, CMRA is usually 
performed with 3D sequences and respiratory motion 
compensation while gadolinium (Gd)-based contrast agents 
can be used to further improve blood to myocardium 
contrast for improved vessel visualization (141). Contrast-T
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enhanced coronary vessel wall imaging has been shown to 
be promising for the identification of the culprit lesion, 
since these lesions show pronounced contrast uptake in 
patients with acute myocardial infarction (142). Non-
contrast black blood MRI has been used to visualize 
coronary vessel lumen and wall (143). High intensity signal 
(HIS) plaques can be identified on heavily T1w MR images 
(144-146). This hyper intense signal is attributed to IPH 
and/or luminal thrombosis (144,145,147) and can be used 
as a predictor for adverse coronary events (hazard ratio: 
3.96; 95% confidence interval: 1.92 to 8.17; P<0.001) (148). 
MRI sequences used to visualize coronary vessel wall have 
shortcomings such as incomplete coverage of the heart, 
poor anisotropic spatial resolution, and the requirement for 
an additional anatomic reference scan of the lumen that can 
lead to misregistration errors (149). 

To counter these issues, multicontrast sequences have 
been developed for coronary artery imaging. 

A novel sequence, coronary atherosclerosis T1w 
characterization with integrated anatomical reference 
(CATCH), allows the acquisition of T1w dark blood and 
anatomical reference bright blood images with a single 
sequence. Hyperintense plaques on CATCH images were 
positively associated with high risk plaque features on invasive 
angiography and optical coherence tomography (150). 

Bright- and black-blood phase sensitive inversion recovery 
sequence (BOOST) is another multicontrast sequence for 
coronary plaque imaging that acquires bright and black blood 
images with a single sequence, employing preparation pulses 
to improve the contrast of anatomical reference bright blood 
images (151). The feasibility of thrombus visualization with 
BOOST was shown in an ex-vivo pig heart. 

PET

The intrinsic low spatial resolution of PET combined with 
cardiac and respiratory motion, make coronary artery PET 
challenging. 18F-FDG and 18F-NaF have been used for 
the evaluation of atherosclerosis in the coronary arteries 
(152-154). The high myocardial uptake of 18F-FDG can 
obscure coronary plaque inflammation. This uptake can be 
suppressed by consuming a high- fat low-carbohydrate diet 
and by fasting before the PET exam (155). 

Coronary PET/MRI patient studies

Andrews et al. (136) investigated whether quantification of 
tracer (18F-fluoride) uptake in the aortic valve and coronary 

arteries differs between PET/CT and simultaneous PET/MR  
(using both the Dixon and a novel free breathing radial 
gradient recalled echo (GRE) attenuation correction 
approach) in 18 patients with aortic stenosis or recent 
myocardial infarction. A free-breathing radial GRE 
attenuation correction map was generated (90). In non-
stented patients, coronary artery TBRmax was comparable, 
although slightly higher using GRE attenuation correction 
PET/MR (1.24±0.27) than PET/CT (1.09±0.19, P=0.03) and 
Dixon attenuation correction PET/MR (1.09±0.26, P≥0.99).

Future developments 

Until now, plaque imaging with PET/MRI has been 
focused on carotids and coronary arteries with 18F-FDG as 
the most commonly used tracer. Other vascular beds such 
as intracranial and peripheral arteries provide opportunities 
that can be explored with PET/MRI. Novel PET tracers 
combined with MRI based PET motion correction is a 
major advantage of PET/MRI. With PET tracers that 
specifically target particular vulnerable plaque features, 
motion-corrected PET images ensure increased sensitivity. 
MR based PET motion correction could help realize the 
full potential of PET imaging. RF-coils also need to be 
updated. Coils designed specifically to minimize photon 
attenuation caused by the coil while maintaining if not 
improving MR image quality could be the answer to using 
flexible RF-coils in PET/MRI. 

Radiomics is a rapidly growing field which essentially 
involves extraction of comprehensive quantitative features 
such shape, size, volume, signal intensity and texture of the 
ROI. By combining PET with different MRI contrasts, 
features from the two modalities can be derived, which 
increase the chance to detect subtle differences in the 
radiological images which cannot be visualized by human 
observers. Currently, radiomic feature extraction from  
PET/MRI is being implemented more in the field of 
oncology such as for texture analysis from combined PET 
and CE-MRI to differentiate radiation injury from recurrent 
brain metastasis (156), to predict recurrence of cervical cancer 
in patients (157), or to characterize early treatment response 
in renal cancer (158). PET/MRI based radiomics could aid 
in risk stratification, evaluation of treatment response and 
provide new insights into plaque development. 

The latest developments in deep learning applications 
for hybrid imaging are reviewed by Zaharchuk et al. (159). 
We have already described how deep learning can be used 
to create PET attenuation maps. Currently, artificially 
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intelligence is being used to denoise images (160), 
reconstruct MR images with undersampled data (161), 
image segmentation (162), reduce PET dose (163-165) and 
predict PET images based solely on MR image input (166). 
Moving forward, we may expect to see autonomous systems 
that use PET/MR images to calculate a risk score and act as 
an assistant to the physician. 

Conclusions 

Although they are still costly and availability is limited, 
the clinical acceptance of PET/MRI and the number 
of installed systems is steadily rising. The combination 
of superior soft tissue contrast of MRI with molecular 
imaging by PET and relatively lower radiation dose make 
hybrid PET/MRI well suited for evaluation of new drugs, 
therapy monitoring, to gain more insights into factors that 
contribute to plaque progression and destabilization and for 
patient risk stratification. Due to its simultaneous nature, 
the inherent co-registration of the two modalities is superior 
to other hybrid imaging modalities currently available. This 
also enables MR-based motion correction of PET data, 
another advantage of PET/MRI. MR-based attenuation 
correction algorithms are considered sufficient, at least 
for clinical interpretation of the images. Additionally, new 
developments such as PET lucent coils, new reconstruction 
algorithms such as compressed sensing and deep learning 
based low-dose PET reconstructions have the potential to 
improve image quality, reduce scan times, reduce radiation 
dose and overall improve patient comfort. Concluding, 
PET/MRI has the potential to become a one stop shop 
modality for patients with atherosclerosis, but further 
validation in larger clinical studies is warranted.
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